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1. Introduction

In SU(N) gauge theories with adjoint matter the Polyakov-loop expectation value serves

as an order parameter for the deconfinement transition [1, 2]. In the confining phase, the

centre of the gauge group, ZN for SU(N), is unbroken and the Polyakov loop expectation

value is zero. In the deconfined phase on the other hand, the centre is spontaneously broken

and the Polyakov loop expectation value is an element of the centre, P = exp(i2πk/N).

When the discrete ZN symmetry is spontaneously broken there exist domain walls that

interpolate between the various vacua. The “fundamental” domain wall interpolates be-

tween two adjacent vacua. More generally, a domain wall which interpolates between one

vacuum P = exp(i2πl/N), and another with P = exp i2π(l + k)/N , is called a k-wall. By
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definition, it is obvious that all the properties of the k-wall (e.g. tension or width) should

be invariant under k → k + N . Charge conjugation implies invariance under k → N − k

as well.

This paper is devoted to the study of domain walls in the deconfined phase of N = 4

SUSY Yang-Mills theory on R
3 × S1, with supersymmetry breaking boundary conditions

for fermions. N = 4 SYM is a useful toy model, since the domain walls can be an-

alyzed at both weak and strong coupling. The weak coupling calculation is performed

by a perturbative analysis, while the strong coupling analysis is performed by using the

AdS/CFT correspondence.

Not much is known about deconfined phase domain walls of the N = 4 theory. The

literature that we will briefly review momentarily, is almost strictly devoted to domain walls

in pure Yang-Mills theory. The tension of the domain walls in pure Yang-Mills theory was

computed at high temperature and consequently, weak coupling, at one-loop order, in the

seminal papers of Bhattacharya et al. [3, 4]. The result is

Tk = k(N − k)
4π2

3
√

3

T 2

√

g2
YM(T )N

. (1.1)

where gYM(T ) is the running gauge coupling at temperature T . The above result (1.1)

was extend to two-loop order in [5]. In particular, the tension up to two-loop order still

exhibits a Casimir scaling, namely Tk ∝ k(N − k). The three-loop analysis [6] reveals

a deviation from Casimir scaling. The tension of domain walls was also measured by

lattice simulations [7 – 9]. The conclusion of [7 – 9] is that Casimir scaling holds within the

measurement error to low-temperatures (close to Tc), where perturbation theory is not valid

anymore. Other aspects of deconfining phase domain walls and of particular significance for

us, the relation between domain walls and spatial ’t Hooft loops were investigated in [10].1

Within the AdS/CFT framework, domain walls in the deconfined phase of N = 4

SYM, in the large-N limit and strong ’t Hooft coupling, were discussed by Aharony and

Witten [12]. They proposed that the fundamental domain wall should be identified with a

D1-brane, reinforcing the connection between ZN walls and spatial ’t Hooft loops. Their

work is reviewed in section 5.

The purpose of this paper is two-fold: (i) To carry out the perturbative analysis of [3, 5]

for the N = 4 SUSY Yang-Mills theory. (ii) To extended the analysis of [12] to the case of

a k-wall. To this end, we propose that the k-wall is an NS5-brane (or a D5-brane in the

S-dual theory) that wraps an S4 inside the S5 in the Type IIB string theory geometry, dual

to the strongly coupled N = 4 theory. The geometry dual to the Euclidean field theory on

R
3 × S1 is the Euclidean AdS-Schwarzschild black hole.

Our main results are as follows: at the one-loop order we find that the tension of the

k-wall in the N = 4 theory is

Tk = k(N − k)
√

2π3 T 2

√
λ

; λ = g2
YMN ≪ 1 (1.2)

1The physical status of these domain walls for the real time hot gauge theory in 3+1 dimensions has

been questioned in [11] and other works. We will, however, only view the ZN walls as interfaces in the

effective 3 dimensional theory on R
3
× S1 where the circle is interpreted as a spatial direction.
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We extend our perturbative analysis beyond one-loop and argue that up to two loops the

tension exhibits a Casimir scaling as in the pure YM case. Although we did not carry out

the three-loop calculation, we do not expect that the Casimir scaling behaviour will hold

beyond two loops.

In the limit of strong ’t Hooft coupling λ ≫ 1, in the large N limit, we find that

the IIB supergravity dual yields a domain wall tension which is no longer proportional to

k(N − k). Instead we find that

Tk = 4
3π N

2 T 2

√
λ

sin3 αk ,
1

2
sin 2αk − αk = π

(
k

N
− 1

)

. (1.3)

This formula is valid when N → ∞ while k/N is kept fixed. It is worth mentioning

that (1.3) is extremely well approximated, within a maximum error of 2%, by a different

expression [13]

Tk ≈ 2πN2 T
2

√
λ

(

sinπ
k

N
− 1

3

(

sinπ
k

N

) 3
2

)

. (1.4)

The paper is organized as follows: section 2 is devoted to preliminary definitions and

review. In section 3 we carry out a detailed one-loop calculation of the k-wall tension. In

section 4 we argue that the Casimir scaling behavior should persist at two-loop. In section

5 we calculate the wall tension at strong ’t Hooft coupling by using supergravity. In section

6 we discuss out results.

2. Preliminaries

The order parameter for the deconfinement transition in SU(N) gauge theories, with matter

transforming in the adjoint representation, is the Polyakov loop. It is strictly only an order

parameter in the Euclidean thermal theory and is defined as the Wilson line around the

(compactified) Euclidean time direction,

P (x) =
1

N
TrP exp

(

i gYM

∫ β

0
A0(x, t)dt

)

, β =
1

T
. (2.1)

At high temperatures, across the deconfinement transition the Polyakov loop acquires an

expectation value, breaking the ZN center symmetry and signalling a deconfined phase [1,

2]. The spontaneous breaking of the ZN symmetry leads to N distinct phases labelled by

the N roots of unity. When the Euclidean gauge theory on R
3 × S1 is viewed as a three

dimensional effective field theory, one can imagine domain walls interpolating between

regions with different expectation values of P . As first established in the works of [3, 4, 14],

the explicit profiles of the ZN interfaces and their tensions can be computed at weak

coupling, utilizing high temperature perturbative and semiclassical methods. The ZN

domain wall is like an instanton in a one dimensional effective theory describing the profile

perpendicular to the interface. The perturbative description works because the thickness

of the domain wall is set by (gYMN
1
2T )−1, the Debye screening scale.

In what follows, we will review (cf. [14]) the semiclassical description of the ZN inter-

faces and apply it to the N = 4 theory at high temperature and weak gauge coupling. The

– 3 –
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first step in this computation involves parametrizing the varying expectation value of the

Polyakov loop across the domain wall, by a classical background value for A0. Thus the

temporal gauge field A0 can be split into classical and quantum parts,

A0 = Acl
0 +Aqu

0 . (2.2)

2.1 The fundamental wall or k = 1

In the three dimensional effective theory, the domain interface can be thought of as a string-

like object moving through time. Taking this interface to span the x−y plane, the different

vacua then sit at different values of z. Focusing on the classical, or background field part,

we pick an ansatz where Acl
0 is expressed in terms of the diagonal traceless generator tN ,

Acl
0 =

2π T

gYMN

tN
B(N)

q(z) ; tN = B(N) Diag[1, 1, 1, . . . , 1
︸ ︷︷ ︸

N−1 entries

, 1 −N ] (2.3a)

B(N) =
1

√

2N (N − 1)
. (2.3b)

The spatial components of the gauge field are chosen to vanish, Ai = 0 for i = 1, 2, 3.

Importantly, the profile function q parametrizes the N different vacua. This can be seen

more explicitly by evaluating the Polyakov loop order parameter with the above ansatz on

a constant background field Acl
0 (the explicit z dependence will be dealt with later),

P =
1

N

[

(N − 1)e
2πiq

N + e
2πiq(1−N)

N

]

. (2.4)

Allowing q to take on one of N integer values, q = 0, 1, 2, . . . , N − 1, we can scan through

each of the N vacua labelled by P = e
2πiq

N . As the vacua are labelled by integer values

of q, the domain interface itself will be characterized by non-integer values of the profile

function q(z) interpolating between two vacua.

The ansatz (2.3a) can be used to describe a wall that interpolates between two ZN

phases labelled by consecutive integers. Since all the vacua are physically equivalent,

to discuss the wall tension, we may focus on the interface between q = 0 and q = 1

without loss of generality. Therefore, we may think of q(z) as interpolating between q(z =

0) = 0 and q(z = L) = 1, where L is the extent or thickness of the interface between

neighbouring vacua.

Up to this point, the walls under scrutiny have been the fundamental or k = 1 walls.

To consider walls between vacua with multiple ZN “charge” difference, k, the ansatz for

Acl
0 must be modified as below.

2.2 The k-wall ansatz

We first set out our conventions for the N2 − 1 generators of SU(N). Separating them

into the N − 1 diagonal generators of the Cartan subalgebra and N(N − 1) off-diagonal or

ladder generators, the Cartan elements are of the form,

tdiag ≡ ti = B(i) Diag[1, 1, 1, . . . , 1
︸ ︷︷ ︸

i−1 entries

, 1 − i, 0, 0, . . . , 0
︸ ︷︷ ︸

N−i entries

] i ∈ [2, N ] (2.5)
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The normalization B(i) as defined in (2.3b) ensures that

Tr(ti tj) =
1

2
δij . (2.6)

For every Cartan generator ti, we can define 2(i − 1) ladder generators, tij with one non-

zero element:

tmn
ij =

1√
2
δn
i δ

m
j , j ∈ [1, i − 1]. (2.7)

tij provides the off-diagonal generators with the non-zero matrix elements in the upper

right half, while the lower left off-diagonal generators are given by the transpose, tji. The

off-diagonal ladder generators are normalized in the following way

Tr(tij tj′i′) =
1

2
δii′ δjj′ . (2.8)

The algebra of the generators simplifies significantly in this basis, with the only non-

vanishing commutators being

[ti, tij ] = NB(i) tij ; [ti, tji] = −NB(i) tji. (2.9)

Returning to the idea of an interface between two vacua labelled by generic integers,

a so called k-wall, a modified ansatz is required. As a k-wall is an interface between two

vacua with a ZN charge difference k, the ansatz for Acl
0 is chosen to be proportional to the

hypercharge matrix Yk

Acl
0 =

2πT

gYMN
q(z)Yk. (2.10)

where Yk is defined as

Yk ≡ Diag[ k, k, k, . . . , k
︸ ︷︷ ︸

N−k entries

, k −N, k −N, . . . , k −N
︸ ︷︷ ︸

k entries

] , k ∈ [1, N ] (2.11)

As with tN , Yk is traceless, and the resulting ansatz will be symmetric under k ↔ N−k
which is required by ZN invariance of the theory.

Applying these modifications to the order parameter, the role of q is now clear. Pre-

viously, for k = 1, the parameter q defined each vacuum individually when integer valued,

and non-integer values of q characterized a point within an interface. For the k-walls with

k > 1, it is no longer q, but the product kq that specifies a given vacuum for integer values

of q; q now becomes a parameter varying across the k-wall, as before from q(0) = 0 to

q(L) = 1. The Polyakov loop order parameter, for this ansatz is

P =
1

N

[

(N − k)e
2πi
N

k q + k e
2πi
N

(k−N) q
]

(2.12)

with P = 1 at q = 0 as before, and P = e
2πi
N

k when q = 1.
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3. k-Wall Tension in N =4 SYM

Having specified the ansatz for the k-wall solution, our aim now is to determine the tension

of the k-wall in N = 4 SYM. The basic idea is to insert the classical or background profile for

the ZN instanton and use weak coupling to expand in the quantum fluctuations around the

background configuration. The quantum fluctuations induce a one-loop effective potential

for q(z), which is then used to determine the wall solution and its tension. Crucially, it is

necessary to ensure self-consistently that the resulting configuration can be understood at

weak coupling. We will elaborate on this subsequently.

At the classical level, as shall be shown, there is no interface solution, so one-loop

effects must be included. The only terms in the action of N = 4 SYM that we need

to focus attention on, are those that involve the interactions of the background gauge

configuration Acl
0 with quantum fluctuations:

S =

∫

d3x

∫ β

0
dτ

{

Tr

[
1

2
(Fµν)2

]

+ Tr

[
4∑

A=1

ψAD/ ψA

]

+ Tr

[
6∑

i=1

1

2
DµφiD

µφi

]

+ . . .

}

(3.1)

The relevant portion of the action includes only kinetic terms for the four Majorana

fermions and six real scalars, and their interactions with the background field through

the gauge covariant derivative. We have omitted in the above, the Yukawa couplings and

the N = 4 quartic scalar potential. Ultimately, integrating over the fluctuating quantum

fields φi, ψA, the gauge fluctuations Aqu
µ , and the ghosts arising from gauge fixing, will

generate an effective potential for the classical gauge fields.

Working in Euclidean space, on R
3 × S1 with antiperiodic boundary conditions for

fermions around the thermal circle, we will treat each of the quantum fluctuations sepa-

rately below.

3.1 Gauge field fluctuations

The one-loop calculations outlined in this section follow essentially standard steps, however

we include them here for completeness. As previously seen, the gauge field Aµ consists of

classical and quantum parts, thus the gauge part of the action can be separated accordingly

SA = Scl
A + Squ

A . (3.2)

Letting q be a general function of z, and using the fact that the only non-zero classical

gauge field is Acl
0 , the classical action can be evaluated simply on this background,

Lcl
A = Tr

[
1

2
(Fµν)2

]

= Tr
[

(∂zA
cl
0 )2
]

= Tr

[
4π2T 2

g2
YMN

2
(∂zq)

2Y 2
k

]

. (3.3)

Using TrY 2
k = Nk(N − k), we obtain

Scl
A =

4π2T 2

g2
YMN

k(N − k)

∫

d3x

∫ β

0
dτ (∂zq)

2. (3.4)
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As mentioned briefly at the start of section 3, the classical action alone is not enough

to show the existence of k-walls, since it is only sensitive to the gradient energy that is

minimized by a constant q solution. To find a k-wall solution, the action needs to be

calculated beyond tree level, at one-loop order, self-consistently at weak coupling.

To treat the gauge field fluctuations at one-loop or quadratic order, we shift attention

to the quantum part of the action wherein we must fix a gauge. We employ the usual

background field Rξ gauges to obtain the action for the quantum fluctuations of the gauge

field

Lqu
A = Tr

[
1

2
(F qu

µν )2
]

+ Tr

[
1

ξ

(
Dµ

clA
qu
µ

)2
]

+ Tr
[
η
(
−D2

cl

)
η
]

(3.5)

with η̄ and η being the Fadeev-Popov ghosts, and the adjoint covariant derivative Dµ and

Dcl
µ defined thus,

Dµ = ∂µ − igYM[Aµ, .], Dcl
µ = ∂µ − igYM[Acl

µ , .] . (3.6)

At the one-loop order we can completely ignore the interactions between different

quantum fluctuations. This amounts to replacing the full covariant derivative Dµ with

Dµcl which is gauge-covariant with respect to the background. Integrating by parts and

assuming that the background field is constant, the action for the quantum fluctuations

becomes

Squ
A =

∫

d3x

∫ β

0
dτ Tr

[

Aqu
µ

(

−D2
cl g

µν + (1 − 1

ξ
)Dµ

clD
ν
cl

)

Aqu
ν

]

+ Tr
[
η
(
−Dµ

clD
µ
cl

)
η
]
. (3.7)

Technically, it is important to note that we are assuming a constant background field

and therefore we will obtain an effective potential for constant field configurations only.

Nevertheless we will employ the same effective potential to look for non-constant domain

wall profiles. Hence this really requires the profile function to be appropriately slowly

varying. Performing the functional integral over the gauge fluctuations Aqu
µ , and the ghost

fields, the one-loop contribution is

Squ
A =

1

2
Tr

[

ln

(

−D2
cl g

µν + (1 − 1

ξ
)Dµ

clD
ν
cl

)]

− Tr
[
ln
(
−D2

cl

)]
. (3.8)

The effective action can be shown to be independent of the gauge fixing parameter ξ due to

the commutativity of the covariant derivatives for constant backgrounds. Thus, at least for

slowly varying interface profiles we are guaranteed to obtain gauge-invariant results and,

in particular, we will choose the Feynman gauge, ξ = 1 so that,

Squ
A = −1

2
Tr ln(−D2

cl). (3.9)

As the background field Acl
0 (z) present in the adjoint covariant derivative is only non-

zero along the compact direction, τ , it reduces to an ordinary derivative in the transverse

directions, x, y and z. In the compact direction the background field is proportional to

the matrix Yk, and being diagonal with N elements, there exist non-trivial contributions

– 7 –
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to the covariant derivative when acting upon ladder generators tij and tji (see for example

eq. (2.9)). Following the notation of [14]

Dcl
0 tij = (∂0 − 2πiTq) tij ≡ D+

0 tij , (3.10)

Dcl
0 tji = (∂0 + 2πiTq) tji ≡ D−

0 tji . (3.11)

The commutator of Yk with the ladder operators for SU(N), has very similar properties to

the commutator in eq. (2.9) while there are significant differences:

[Yk, tij ] = Ntij [Yk, tji] = −Ntji , i ∈ [N − k,N ] , j ∈ [1, N − k] (3.12)

All other commutators vanish. The full non-trivial q dependence comes from the action

of the covariant derivatives on the ladder generators; equivalently, from integrating out all

off-diagonal fluctuations that do not commute with Yk. For this reason we may replace the

covariant derivatives with

Dcl → (D±
0 ,
~∂ ). (3.13)

Fourier transforming to Euclidean momentum space, the temporal derivative ∂0 may be

replaced by the Matsubara frequencies p0,

i∂0 → p0 = 2πnT , n ∈ Z. (3.14)

The action of the covariant derivatives on ladder operator-like fluctuations is, from

eq. (3.11),

iD±
0 → p±0 = 2πT (n ± q). (3.15)

Since there are precisely k(N − k) fluctuations (3.12) which yield a non-zero contri-

bution to the effective action at one-loop and the sum over the Matsubara modes includes

both positive and negative integers, we have

Squ
A = 2k(N − k)VtrL

+∞∑

n=−∞

∫

T
d3p

(2π)3
ln
(
(p+

0 )2 + p2
)
. (3.16)

Here Vtr is the volume of the space transverse to the z-axis

Vtr = L1L2β , (3.17)

with L1, L2 being the extents of the system in the x and y directions respectively. As the

Euclidean time circle is compactified, the k-wall can be viewed as being smeared along this

direction. Now it remains to determine the dependence of the one-loop effective action on

q. Up to irrelevant additive constants, the q-dependence is determined by the variation of

Squ
A with respect to q,

1

2πT

∂Squ
A

∂q
= 4k(N − k)Vtr L

+∞∑

n=−∞

∫

T
d3p

(2π)3

(
p+
0

(p+
0 )2 + p2

)

(3.18)

= −4k(N − k)Vtr LπT
3

+∞∑

n=−∞

(n+ q)|n+ q|,

– 8 –
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where the final result follows from standard expressions for the regulated integral using

dimensional regularisation. Using zeta function regularisation, the explicitly divergent

sum over n can be controlled quite elegantly,2

+∞∑

n=−∞

(n+ q)|n+ q| =
+∞∑

n=0

[
(n+ q)2 − (n+ 1 − q)2

]
= ζ(−2, q) − ζ(−2, 1 − q). (3.19)

Remarkably, this particular form of the Hurwitz zeta function is a simple polynomial in q

ζ(−2, q) = − 1

12

d

dq

[
q2(1 − q)2

]
. (3.20)

Finally we obtain the one-loop effective potential for slowly varying q(z), (up to an additive

constant)

Squ
A =

4

3
k(N − k)Vtr π

2T 4

∫ L

0
dz q2(1 − q)2. (3.21)

The potential is manifestly invariant under q → 1− q and has minima at q = 0 and q = 1.

We can therefore have a ‘kink’-like configuration interpolating between these two vacua.

Combining the quantum one-loop action along with the classical kinetic term calculated

earlier, the total effective action can be compactly expressed, after a coordinate rescaling

z → z′ =
√

g2
YMN/3Tz as,

SA =
4π2T 3

√
3NgYM

k(N − k)Vtr

∫ L′

0
dz′

[(
∂q

∂z′

)2

+ q2(1 − q)2

]

. (3.22)

The double well potential, represents the so-called “q-valley”. Due to the rescaling of z →
z′, the upper limit of integration L is also effectively rescaled: L → L′ =

√

g2
YMN/3TL.

The large volume limit corresponds to
√

g2
YMNTL → ∞ which can also be viewed as the

three dimensional limit when the thermal circle shrinks to zero size.

We can now self-consistently justify the use of the constant-q effective potential to infer

the existence of the spatially varying domain wall. In terms of the z′ coordinate, it is clear

that the width of the domain wall is a number ∼ O(1). In physical units, the width of the

domain wall is then set by (
√

g2
YMNT )−1, which is the Debye or electric screening length.

At weak gauge coupling (or weak ’t Hooft coupling at large N), this is much larger than the

typical thermal wavelength T−1, of the perturbative degrees of freedom. Thus the domain

wall is thick and a slowly varying configuration. Furthermore, since the scale of variation

is set by the Debye scale, the wall and its properties should be accessible in perturbation

theory. If the wall thickness had been set by the magnetic scale (g2
YMNT )−1, the non-

perturbative scale of the three dimensional effective theory, the perturbative description

above would be invalidated.

Having reviewed the perturbative gauge field contributions to the physics of the domain

walls, let us now turn to the matter fields in the adjoint representation in the N = 4 theory.

2The Hurwitz zeta function is defined as ζ(l, m) =
P+∞

n=0(n + m)−l.
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3.2 Scalar field fluctuations

The N = 4 theory has six hermitian scalars transforming in the adjoint representation of

the gauge group. We consider them first, due to the similarity in the calculation to the

gauge field contribution, before turning to the fermion fields in section 3.3. The scalar part

of the action coupled to the classical background gauge field is,

SS =

∫

d3x

∫ β

0
dτ Tr

[
ns∑

i=1

1

2

(

Dcl
µφiD

µ
clφi

)
]

(3.23)

where ns = 6 is the number of real adjoint scalars, and we have ignored interactions of the

fluctuations. Integrating out the scalar field fluctuations we have

SS =
ns

2

∫

d3x

∫ β

0
dτ Tr ln(−D2

cl). (3.24)

This is exactly the same as eq. (3.9) up to the overall normalization and generates the

one-loop potential

SS =
4π2T 3

√

3Ng2
YM

k(N − k)
ns

2
Vtr

∫ L′

0
dz′ q2(1 − q)2. (3.25)

3.3 Fermionic contributions at one loop

Finally there are the nf = 4 fermions transforming as a 4 of the SO(6) R-symmetry. These

play a crucial role at finite temperature since they have antiperiodic, supersymmetry break-

ing boundary conditions around the thermal circle. At quadratic order in the fluctuations

SF =

∫

d3x

∫ β

0
dτ Tr

[ nf∑

A=1

ψAD/ ψA

]

. (3.26)

Working in Euclidean space, the Dirac gamma matrices are

γ1,2,3 =

(

0 −iσ1,2,3

iσ1,2,3 0

)

, γ4 =

(

0 1

1 0

)

(3.27)

where σi are the standard Pauli matrices. The functional integral over the fermion fields

then yields the Pfaffian of the Dirac operator, since ψA and ψ̄A are not independent due

to the Majorana condition,

SF = −
∫

d3x

∫ β

0
dτ nf Tr ln

[

−((Dcl
0 )2 + ∇2)

]

. (3.28)

Despite the formal similarity to the bosonic contributions, it is at this point that the

analysis departs from that for scalar and gauge fluctuations.

Consider first the case (zero temperature) wherein the compact direction has peri-

odic (SUSY preserving) boundary conditions for the fermions. The fluctuation determi-

nant (3.28) would be identical to that of the bosons (and the opposite sign) to produce a
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one-loop action of the form SF = −nfS
qu
A . With supersymmetric boundary conditions the

three fluctuation terms at the one-loop level would cancel, leaving only the classical action,

STotal = Scl
A + Squ

A + SS + SF = Scl
A + (1 + ns/2 − nf )Squ

A = Scl
A . (3.29)

The cancellation between bosons and fermions will persist at all loop orders for SUSY-

preserving boundary conditions.

However, in the Euclidean thermal theory, the fermions have anti-periodic boundary

conditions around the Euclidean time circle. The Matsubara frequencies are thus shifted

to half-integer values n → n + 1
2 , n ∈ Z. The eigenvalues of the covariant derivative,

eq. (3.15), acting on fermions is modified

iD±
0 → p±0 = 2πT

(

n+
1

2
± q

)

. (3.30)

This shift has a non-trivial effect on the one-loop effective potential and the fermi-bose

cancellations will be absent. With a half-integer moding of the fermionic Matsubara fre-

quencies, the sums over n for p+
0 and p−0 are no longer equivalent, and each sum must be

evaluated separately,

SF = −k(N − k)VtrLT nf

+∞∑

n=−∞

∫
d3p

(2π)3
(
ln
[
(p+

0 )2 + p2
]
+ ln

[
(p−0 )2 + p2

])
. (3.31)

Once again as before it is useful to take the variation of the action with q, in order to

determine the q-dependence of the effective potential,

∂SF

∂q
= −2k(N − k)(2πT )VtrLT nf

+∞∑

n=−∞

∫
d3p

(2π)3

(
p+
0

(p+
0 )2 + p2

− p−0
(p−0 )2 + p2

)

. (3.32)

Again, integrating over the spatial momenta p employing dimensional regularization,

∂SF

∂q
=2k(N − k)(2πT )VtrLT nf πT

2

×
+∞∑

n=−∞

[(n+ 1/2 + q) |n+ 1/2 + q| − (n+ 1/2 − q) |n+ 1/2 − q|] .
(3.33)

Now, to regulate this sum with zeta functions, we consider each term in the sum over n

individually and using the definition of the Hurwitz zeta function, the sums simplify to

+∞∑

n=0

(n+ 1/2 + q)2 − (n+ 1/2 − q)2 = ζ

(

− 2,
1

2
+ q

)

− ζ

(

− 2,
1

2
− q

)

(3.34)

+∞∑

n′=0

(
n′ − 1/2 + q

)2 −
(
n′ + 3/2 − q

)2
= ζ

(

− 2,−1

2
+ q

)

− ζ

(

− 2,
3

2
− q

)

. (3.35)

The definition of the Hurwitz zeta function as a derivative, eq. (3.20) allows the action to

be explicitly determined, up to integration constants,

SF = − 4π2T 3

√
3NgYM

k(N − k)Vtr
nf

2

×
∫

dz

[(
1

2
+ q

)2(1

2
− q

)2

+

(

−1

2
+ q

)2(3

2
− q

)2
]

.

(3.36)
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It is obvious now that this fermionic action will not cancel against the quantum gauge and

scalar parts. The effective potential is invariant under q → 1 − q.

3.4 Full one-loop effective action

Putting all the above ingredients together we obtain the full one-loop effective action for

the interface

STotal = SA + SS + SF (3.37)

=
4π2T 3

√
3Ng2

YM

k(N − k)Vtr

∫

dz′

[(
∂q

∂z′

)2

+ (1 +
ns

2
)q2(1 − q)2

−nf

2

{(
1

2
+ q

)2(1

2
− q

)2

+

(

−1

2
+ q

)2(3

2
− q

)2
}]

. (3.38)

Letting ns and nf take their explicit values in N = 4 SYM, the quantum effective action

simplifies to

STotal =
4π2T 3

√

3g2
YMN

k(N − k)Vtr

∫

dz′

[(
∂q

∂z′

)2

+ 6q(1 − q) − 5/4

]

. (3.39)

It is a simple exercise to obtain the minimum action configuration that interpolates between

the two vacua q = 0 and q = 1, satisfying (dq/dz′)2 = 6q(1 − q), so that the action for the

kink or domain wall is

STotal =
4π2T 3

√

3g2
YMN

k(N − k)Vtr 2

∫ 1

0
dq
√

6q(1 − q) =
√

2
π3T 3

√

g2
YMN

Vtr k(N − k). (3.40)

We therefore conclude that the tension of the k-wall in the Euclidean high temperature,

N = 4 theory at weak coupling is

Tk =
√

2π3 T 2

√

g2
YMN

k(N − k). (3.41)

where one factor of T has cancelled against the size of thermal circle in Vtr, leaving us

with the tension of a 1 + 1 dimensional interface in three dimensions. We note firstly that

the parametric dependence on the gauge coupling is the same as in ordinary Yang-Mills

theory [3, 4, 14]. One difference is that unlike in pure Yang-Mills theory, the gauge coupling

itself does not run and therefore does not depend on temperature. We are, however, free to

choose an arbitrary weak coupling in N = 4 theory, gYM ≪ 1. All other qualitative aspects

of the solution are similar to pure Yang-Mills theory. Specifically, the wall is “fat” with a

width set by the Debye screening length (
√

g2
YMNT )−1. Interestingly, for k ∼ O(N0), in

the ’t Hooft large-N limit, the k-wall tension scales as N1 rather than N2.

Finally, the one-loop calculation demonstrates a Casimir scaling law for the tension of

the k-wall. It is not a priori clear that Casimir scaling will persist at higher loop orders,

since at one-loop its origin is essentially kinematic. Next we will investigate whether

Casimir scaling remains at the two-loop level in N = 4 theory.
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4. N =4 at 2-loop

It has been shown [5, 6] in pure Yang-Mills theory that Casimir scaling of ZN domain

walls remains at two-loops, but is lost at three-loops. Below we adapt the arguments of

the two-loop result for pure Yang-Mills theory to argue that the scaling for N = 4 theory

will also be Casimir like at the two-loop order.

4.1 Pure YM at 2-loop

Consider first the 2-loop calculation of the domain wall tension in pure Yang-Mills theory

in the deconfined phase. Let us first lay out our notation and conventions. Defining the

structure constants of the SU(N) algebra and their normalisation as usual

ifa,b,c = 2Tr
([

ta, tb
]

tc
)

,
(

fa,b,c
)2

=
1

2
, (4.1)

the indices a, b, and c can stand for Cartan generators, tdiag, or the ladder generators tij, tji.

From the commutation relations for the ladder generators and the Cartan generators, it

follows that the only non-zero values of fa,b,c exist when no more than one of the generators

is diagonal. The specific non-zero cases are explored in more detail below.

It was demonstrated in [5, 6, 14] that at the two-loop level, including three and four

vertex gluon interactions, and gluon-ghost interactions, all possible loop graphs generate

contributions to the k-wall action, of the form

S2 ∼
∑

a,b,c

fa,b,cfa,b,cB2(Ca)B2(Cb). (4.2)

Here B2 is the second Bernoulli polynomial which is even in Ca

B2(Ca) ∼
(

C2
a − |Ca| +

1

6

)

(4.3)

and the variables Ca are shorthand for the functions Cij that encode all the q dependence

Cij = A0 i −A0 j ∼ q [(Yk)i − (Yk)j ] . (4.4)

It is obvious that Cii = 0, while Cij is only non-zero when i and j sit in different “sectors” of

Yk (recall from (2.11) that its elements live in two sectors taking only two possible values).

Thus Cij = 0 or ±q up to an overall factor.

With the above definitions and conventions, explicit computation of eq. (4.2) reveals

Casimir-like scaling, like that at one-loop. This arises from summing all non-vanishing

terms in (4.2) that have q dependence (i.e. ignoring all terms proportional to B2(0)
2). The

different non-trivial terms can be classified and accounted for as explicitly explained in the

appendix. The final result of the combinatorics gives

S2 ∼ Nk(N − k)
[
B2(q)

2 + 2B2(q)B2(0)
]
. (4.5)

As explained in the appendix, the two key technical reasons for Casimir scaling in the final

result are: one, that all q dependence in (4.2) arises from terms where at least one of the

two indices a and b are off-diagonal generators. Secondly, and perhaps more importantly,

the combination B2(Ca)B2(Cb) is an even function of the Ca.
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Figure 1: A two-loop fermion contribution to the effective action.

4.2 Argument for Casimir scaling in N = 4 SYM at 2-loops

The two factors outlined in the previous section, coupled with the structure constants,

effectively guarantee Casimir scaling in pure Yang-Mills. For this to be present in N = 4

theory, the same factors must come into play. The propagators for the adjoint scalars in

N = 4 SYM, are equivalent (up to an overall factor) to the ghost propagators in pure YM.

Therefore we expect the inclusion of the adjoint scalars, to not change the Casimir scaling

at two loops.

For the adjoint fermions of the N = 4 theory, a SUSY-based argument can be em-

ployed. With periodic boundary conditions, all perturbative fermionic and bosonic contri-

butions to the effective potential for a constant (slowly varying) A0 background will cancel

due to supersymmetry. Since the bosonic fluctuations at two-loop yield Casimir scaling of

the effective potential, the fermionic contributions will exhibit the same.

When the boundary conditions on the fermions are changed so that we have a thermal

interpretation, the anti-periodic boundary conditions on fermions will only lead to a shift

in q dependence, q → q′ = q ± 1/2 due to the change in the Matsubara modes. This shift

would leave all other overall scaling factors intact and we expect

SF
2 ∼ (f ij,ji,diag)2B2(C

F
ij )B2(Cji) + permutations (4.6)

where CF
ij is the shifted difference,

CF
ij ∼ (A0 i −A 0j) ±

1

2
∼ q ± 1

2
. (4.7)

Such a term would arise from the two-loop graph shown in figure 1.

This would then imply

SF
2 ∼ 1

2
B2(q)

[

B2

(

q +
1

2

)

+B2

(

q − 1

2

)]

k(N − k) (4.8)

=
1

2
q2(1 − q)2

[(
1

2
+ q

)2(1

2
− q

)2

+

(

−1

2
+ q

)2(3

2
− q

)2
]

k(N − k)

representing the pair of gluon-fermion vertices in figure 1. These arguments make it plau-

sible that Casimir scaling of k-wall tensions persists at the two-loop level in N = 4 SYM.

However, there is no reason why this should continue to be the case beyond two-loops
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5. ZN domain walls at strong coupling

We now turn to the domain walls in strongly coupled N = 4 theory in the large N

limit, at finite temperature. The deconfined phase of the four dimensional field theory

at strong coupling is described by Type IIB string theory in the Schwarzschild black hole

in AdS5 × S5 [15]. In the Euclidean picture, the conformal boundary of the geometry

is R
3 × S1, the boundary S1 being identified with the Euclidean thermal circle of the

strongly coupled field theory. The spontaneous breaking of the ZN center symmetry in

the deconfined phase follows from the fact that the thermal circle shrinks smoothly to zero

size at a radial coordinate corresponding to the horizon of the Lorentzian black hole. The

resulting black hole cigar can be wrapped by finite action string world-sheet instantons

resulting in a non-zero Polyakov loop that spontaneously breaks the ZN symmetry.

5.1 D-string as domain wall

With the ZN center symmetry spontaneously broken it should be possible to identify the

N distinct “vacua” of the theory in the IIB string dual. This question was raised and

addressed in [12]. Shifting the phase of the Polyakov loop by the Nth roots of unity, moves

us through the N possible ground states of the deconfined theory. In the string dual this

is realized as a shift of the NS two-form field B
(2)
NS integrated over the black hole cigar D2,

∫

D2

BNS →
∫

D2

BNS + 2πk/N , k = 1, . . . N. (5.1)

Disc instantons wrapping the black hole cigar will then pick up a phase exp(i 2πk/N),

determining the VEV of the Polyakov loop.3

Across a domain wall, the phase of the Polyakov loop jumps. The argument of [12],

shows that a D-string world-sheet Σ ⊂ R
3 (and pointlike on the disc D2 and the S5)

provides precisely such a jump. In particular, across Σ, the RR three form flux HRR

changes by one unit for a single D-string.

There is another argument establishing the connection between ZN domain walls and

the D-string. This exploits the direct relation between ZN interfaces and spatial ’t Hooft

loops [10, 16]. The spatial ’t Hooft loop operator V (C), along a contour C, creates an

infinitely thin tube of chromomagnetic flux along C. The spatial ’t Hooft loop bounds a

surface (a Dirac sheet) across which the gauge potential A0 is discontinuous. The explicit

perturbative computation of the expectation value of the ’t Hooft loop in the deconfined

phase can be shown to reduce to the domain wall calculations presented earlier in this

paper. Specifically, the leading contribution to a large ’t Hooft loop in R
3 is proportional

to the area A of the minimal surface bounded by C, V (C) ∼ exp(−T A). Thus the infinite

volume domain wall tension T is computed by the spatial ’t Hooft loop of infinite extent.

By the AdS/CFT correspondence, the ’t Hooft loop is a Euclidean D-string world-

sheet with disc topology, whose boundary traces the spatial loop in the field theory on

3The N vacua should be physically equivalent. This can be understood from the transformation of the

term in the Type IIB low energy effective action S = i
R

BNS∧
HRR

2π
∧

F5

2π
. In the sector with

R

R3 HRR/(2π) =

1, the partition function will be invariant under (5.1), as δS = i 2πk
N

N
R

R3

HRR

2π
= 2πik, where we have used

the fact that there are N units of five-form flux through the S5.
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the conformal boundary of the spacetime. In the AdS-Schwarzschild black hole geometry,

the D-string world-sheet droops toward the interior of the spacetime. As the size of the

loop is scaled up, most of the D-string worldsheet sits at the horizon where the bulk

Euclidean geometry smoothly ends, and consequently the spatial ’t Hooft loop exhibits an

area law [17 – 19]. When the loop is taken to be of infinite extent, we obtain a Euclidean

D-string world-sheet Σ ⊂ R
3 located at the horizon of the Euclidean black hole. This is

the ZN interface.

5.2 k-wall tensions

The metric for the high temperature, Euclidean AdS-Schwarzschild black hole in AdS5 ×
S5 is,

ds2 =R2

[

f(r) dt2 +
dr2

f(r)
+ r2 d~x 2 + dΩ2

5

]

f(r) = r2 − π4T 4

r2
.

(5.2)

where R4 = 4π(gsN)α′2 = (g2
YMN)α′2. The D1-brane world-sheet theory is described by

the Dirac-Born-Infeld action in the absence of background C
(2)
RR potential

SD1 =
1

2πα′

∫

d2σ e−Φ
√

det∗g. (5.3)

The dilaton is constant with e−Φ = 1/gs = 1/g2
YM. Assuming that the D-string worldsheet

Σ is oriented along the x− y plane, we choose the embedding σ1 = x and σ2 = y. Then

det∗g = R4r4. (5.4)

and to minimize the action, the D-string will sit at the smallest possible value of r, which,

in this geometry is r = πT . We then find the tension of the k = 1 wall at strong coupling is

T1 =
1

2πα′gs
R2π2T 2 = 2π2 N

√

g2
YMN

T 2. (5.5)

Remarkably, the parametric dependence of this formula, on the ’t Hooft coupling and

N , closely resembles (3.41). The dependence on the temperature is guaranteed to be

quadratic by the underlying conformal invariance of the N = 4 theory. The N dependence

is consistent with the domain wall being a D-brane in the large-N limit and the fact

that the tension of the D-string in AdS is proportional to 1/
√

g2
YMN is also obvious from

supergravity. What is interesting to note is that the formula at weak coupling also has the

same dependence on the ’t Hooft coupling.

For a collection of k D-strings, with k ∼ O(1), the tension is simply k times that of a

single D1-brane in the AdS-Schwarzschild background.

When the number of D-strings k, becomes of order N , in the large N limit, we can

no longer think of the system as consisting of k separate D1-branes. In fact we expect

the collection to blow up into a higher dimensional brane via an analogue of the dielectric
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effect [20] in the curved geometry. There are two possible blown up brane configurations

to consider in the AdS5 × S5 black hole geometry, carrying k units of D-string charge. At

zero temperature, in AdS5 × S5, electric Wilson loops in the kth rank antisymmetric and

symmetric tensor representations of SU(N), are computed by a D5-brane wrapped on an

S4 ⊂ S5 and a D3-brane wrapping an S2 ⊂ AdS5, respectively [21 – 23, 25, 24]. Hence a

collection of k D-strings, representing ’t Hooft loops, could expand into wrapped NS5 and

D3-branes, by S-duality.

5.2.1 The k-wall as a 5-brane

We expect that the correct configuration describing a k-wall is an expanded 5-brane. The

5-brane yields the kth rank antisymmetric tensor representation of Wilson/’t Hooft loops;

this is manifestly symmetric under k → N−k, a property that we require from a candidate

ZN interface.4 The intimate relationship between the baryon vertex (a 5-brane in the bulk)

and flux tubes in the gauge theory (D- and F-strings in the bulk) [28 – 30] also naturally

leads us to consider 5-branes as the candidates.

It is most convenient to first study an expanded probe D5-brane carrying k units of

F1-string charge, and subsequently S-dualize to obtain the D-string domain wall. The

action for the probe D5-brane has both Dirac-Born-Infeld and Wess-Zumino terms, and

our analysis follows closely that in [22]

S =
1

(2π)5α′3gs

[∫

dx dydΩ4

√

det(∗g + 2πα′F ) − igs

∫

2πα′F ∧ ∗C4

]

(5.6a)

C(4) =
R4

gs

[
3

2
(α− π) − sin3 α cosα− 3

2
cosα sinα

]

Vol(S4). (5.6b)

Here, C(4) is the relevant component of the RR four-form potential, proportional to the

volume form on S4. We have assumed that the D5-brane wraps an S4 located at a polar

angle 0 < α ≤ π inside the S5. Thus the D5-brane has world-volume Σ×S4 where Σ ⊂ R
3

is oriented in the x−y plane. In addition, a world-volume electric field Fxy in the x−y plane

is switched on to endow the wrapped 5-brane with F-string charge. Since we are working

in Euclidean signature, the electric field is imaginary, so it is useful to define Fxy = iF .

With this ansatz, using R4 = 4π(gsN)α′2, the D5-brane action is

S =
N
√
λ

3π2

∫

dx dy

(

sin4 α

√

r4 − 4π2F 2

λ
−D(α)

2πF√
λ

)

(5.7)

where we have defined the ’t Hooft coupling λ = g2
YMN and

D(α) = −3

2
(α− π) + sin3 α cosα+

3

2
cosα sinα. (5.8)

The equation of motion for the gauge field associated to F gives the total F-string charge

k which is quantized; in particular the canonical momentum δS/δF is the coupling of the

4’t Hooft/Wilson loops in the symmetric tensor representation do not have this symmetry property.
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world-sheet to the BNS field. Thus,

k = − δS

δF
=

2N

3π




2πF√
λ

sin4 α
√

r4 − 4π2F 2

λ

+D



 . (5.9)

Together with this, the equation of motion for the polar angle α determines the angle (and

the size of the S4) completely in terms of the string charge k,

2πF/
√
λ

√

r4 − 4π2F 2

λ

= − cotα (5.10a)

cosα sinα− (α− π) =
k

N
π. (5.10b)

This equation implicitly fixes the location of the S4 inside the S5. Importantly, under

the operation k → N − k, the associated polar angle α is mapped to π − α. All physical

properties of the wrapped object are therefore invariant under k → N − k, as necessary for

the (magnetic) ZN interface.

Since the world-volume electric field and the size of the internal S4 is completely

determined, it only remains to verify the radial coordinate of the F-string configuration.

Plugging the solutions (5.10a), (5.10b), we have the effective action

S =
N
√
λ

3π2

∫

dx dy r2
[

sin3 α+
3

2

(
k

N
π

)

cosα

]

. (5.11)

5.2.2 Boundary terms

An extremely important point here is the inclusion of “boundary terms” in the problem at

hand, an issue which was tackled in [22] and related references cited above. In these latter

works, Wilson loops were being computed and the wrapped probe branes also had boundary

terms in their action that were crucial and necessary. The interface under investigation

here does not appear to have obvious boundary terms that need to be added since the entire

world volume Σ ⊂ R
3 does not actually extend to the boundary of AdS space. However,

there is one type of boundary term that needs to be accounted for. This term acts as a

Legendre transform, trading the world-volume gauge potential for its conjugate momentum

and fixing the string charge k,

Sbdry = k

∫

dx dy F. (5.12)

so that the net action

S + Sbdry = N

√
λ

3π2

∫

dx dy

(

r2
[

sin3 α+
3

2

(
k

N
π

)

cosα

]

+ 3π2 k

N

F√
λ

)

. (5.13)

The interpretation of the domain walls as infinitely large spatial Wilson/’t Hooft loops,

makes it necessary to consider these boundary terms exactly as in [22, 23].

The inclusion of this term is also essential for guaranteeing invariance under k → N−k.
The equation of motion (5.10a) implies that F = −r2

√
λ cosα/2π. Thus the complete
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Lagrangian density in (5.13) only depends on r2, and the action is minimized when r = πT .

The resulting formula for the tension is the same as the action for 5-branes computing

Wilson loops in the antisymmetric tensor representation,

TF1 = N
√
λ
T 2

3
sin3 α. (5.14)

5.2.3 Tension of the 5-brane k-wall

Above, we deduced the tension of the wrapped D5-brane carrying k units of fundamental

string charge. This object can be interpreted as a domain wall associated to the breaking

of a magnetic ZN symmetry of hot N = 4 theory. S-duality on this yields the domain wall

in the electric picture as a wrapped NS5-brane carrying k units of D-string charge.

Now we can S-dualize (5.14) by sending gs → 1/gs, to obtain the tension of the k-

domain wall at strong coupling, interpolating between two generic ZN vacua in the high

temperature N = 4 theory:

Tk =
4

3
πN2 T 2

√

g2
YMN

sin3 α , cosα sinα− (α− π) =
k

N
π. (5.15)

Obviously, this bears little resemblance to the weakly coupled theory (3.41). Nevertheless,

there are a few significant remarks to be made. First, the dependence on the ’t Hooft

coupling is what one expects from a weakly curved string dual (SUGRA), and it is sur-

prisingly in agreement with the weakly coupled Yang-Mills description (3.41). The second

interesting feature of the tension at strong coupling is that when k ∼ O(N), it scales as

N2, which is the scaling expected from a classical soliton in a large N theory (such as an

NS5-brane in the IIB dual) — this feature also appears to be manifest at weak coupling

from the Casimir scaling of the tension. Finally, for k ≪ N , the strong coupling k-wall

tension has an expansion in fractional powers of (k/N),

Tk ≃ 2π2kN
T 2

√
λ

(

1 −C

(
k

N

)2/3

+ . . .

)

. (5.16)

We round off our discussion of the strongly interacting theory with one additional

aspect of the realization of domain walls as D-branes in the Type IIB theory. The k = 1

wall is a D-string worldsheet, pointlike on the transverse S5. When k ∼ O(N), the D-

strings expand into an NS5-brane wrapping an S4 ⊂ S5. In both cases, the respective

probe branes spontaneously break the SO(6) isometry of the S5 to an SO(5) subgroup.

While this feature is obvious from the dual string perspective, its interpretation in the

gauge theory is somewhat obscure. In particular, the spontaneous breaking of the global

symmetry suggests that at least classically there are massless fluctuations of the D-string

worldsheet associated to fluctuations of a point, or an S4, in the S5. These classically

massless internal zero modes are certainly not apparent in our weak-coupling ZN instanton

solutions, since the perturbative objects we discussed did not have any scalar profiles turned

on.5

5In this context one should perhaps recall that if the effective domain wall theory were to be quantized,

in the strongly coupled dual, the apparently massless Goldstone boson fluctuations should be generically

rendered massive in the two dimensional world-volume theory of the domain wall.
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Figure 2: Casimir and sin3 behaviours. The solid red line is sin3 (strong coupling), whereas the

dashed black line is the Casimir scaling (weak coupling).

The direct connection between the domain walls and ’t Hooft loops may help in further

clarifying this issue. In particular, we know that that the AdS/CFT correspondence does

not provide us with direct access to Wilson/’t Hooft loops of the N = 4 theory at strong

coupling, but instead gives us the Wilson-Maldacena (or ’t Hooft-Maldacena) loops [26, 27]

W (C) =
1

N
TrPei

H

C
ds(Aµẋµ+Φiθ

i|ẋ|). (5.17)

It would be interesting to compute the expectation values of these kinds of loops at weak

coupling and high temperature. In particular, an interesting question is what kind of

domain wall tension does the ’t Hooft-Maldacena loop compute at high temperature, in

the weakly coupled theory and how it differs from the standard ZN domain wall at weak

coupling. Specifically, are there classical solutions that have profiles for the scalars turned

on, correlated in some way to the non-Abelian A0 profile, providing the solutions with

internal zero modes?

6. Conclusions

In this paper we discussed the tension of domain walls in the deconfined phase of N = 4

super Yang-Mills theory on R
3 × S1. While the tension is proportional to k(N − k) at the

one and two loop level at weak coupling, it exhibits a different behaviour at strong coupling.

This is expected since already at three loops the ZN domain wall tensions are not expected

to exhibit a Casimir scaling. Nevertheless, a quantitative comparison of the weak and

strong coupling behaviours of the tensions reveals intriguing features as we see below.

In figure 2 we have plotted the Casimir scaling (weak coupling behaviour) and the

supergravity result (strong coupling) as a function of k/N for N → ∞. The two graphs

are normalized such that Tk/N=1/2 = 1. The maximum difference between the two graphs

is about 4%.
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Our results can be compared to lattice simulations, which were performed for the

pure YM theory. Within the measurement error, the lattice results are compatible with a

Casimir scaling [8, 9], even at low temperature (but above the deconfinement transition)

where perturbation theory is not applicable and there is no reason to expect an exact

Casimir scaling behaviour. It will be interesting to perform a more accurate simulation, in

order to see a deviation from Casimir scaling at low temperatures. Although the results of

this paper were obtained for N = 4 super Yang-Mills, they might shed light on the expected

tension of the pure Yang-Mills theory at strong coupling (low-temperatures). Qualitatively,

we expect from our study that as the temperature of pure Yang-Mills theory decreases the

ratio of the k-wall tension to the fundamental wall tension will increase, but by a very

small amount (see figure 2).

We conclude this paper with several open problems. It would be a useful exercise to

complete the two-loop calculation and to perform a three loops calculation of the k-wall

tension in N = 4 SYM. Another open question, relevant for both the pure and N = 4 SYM,

is to calculate the width of the domain wall in perturbation theory. We have also mentioned

that the domain walls at strong coupling appear, at least classically, to have internal light

degrees of freedom naturally associated to a spontaneous breaking of the SO(6) global

symmetry. Their appearance is closely related to the Wilson-Maldacena loops in N = 4

theory, which are natural in the strong coupling dual. It would be extremely interesting to

firm up the connection between these loops and ZN domain wall solutions at weak coupling

in hot N = 4 theory.

Finally, it will be interesting to find the field theory that lives on the ZN domain

walls. Since domain walls (at least at large N) are believed to be QCD D-branes [31],

there should be a 1+1 dimensional field theory living on the domain walls, similarly to the

Acharya-Vafa field theory that lives on the domain walls of N = 1 SYM [32]. It would

be fascinating to identify and show the existence of such a field theory, even in the case

of pure YM theory. The answer to this question is certainly within reach for the N = 4

theory at strong coupling.
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A. 2-loop combinatorics

Case I: Ca, Cb 6= 0: Ca and Cb are only non-zero when a and b indices correspond to

ladder generators. The remaining index on fa,b,c in (4.2) can either correspond to a Cartan

(diagonal) generator or to a ladder operator. In the former case

f ij,ji,diagf ij,ji,diagB2(Cij)B2(Cji) ∼ 2k(N − k)B2(q)
2. (A.1)

This result can be arrived at, by first noting that i, j must be in separate sectors of Yk for

Cij and Cji not to vanish. It is then clear that there are 2k(N − k) such terms which are

identical since B2 is an even function.
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When the index c corresponds to a ladder generator, carefully following the combina-

torics yields

f il,lj,jif il,lj,jiB2(Cil)B2(Clj) ∼ [k(N − k)(N − k − 1) + k(k − 1)(N − k)]B2(q)
2. (A.2)

Case II: Ca = 0, Cb 6= 0 and Ca 6= 0, Cb = 0: now either a or b can label a diagonal

generator, or both a and b can correspond to off-diagonal generators. In the former case

we have the contribution

f ij,diag,jif ij,diag,jiB2(Cij)B2(Cdiag) or fdiag,ij,jifdiag,ij,jiB2(Cdiag)B2(Cij)

∼ 4k(N − k)B2(q)B2(0).

(A.3)

Finally, when each of a, b and c map to off-diagonal, ladder generators

f il,lj,jif il,lj,jiB2(Cil)B2(Clj) (A.4)

Here i and j are in different sectors, therefore forcing l to be in a matching sector to one of

them. Thus, either Cil or Clj will vanish. Swapping sectors for i and j gives a factor of 2.

→ 2 [k(N − k)(N − k − 1) + k(k − 1)(N − k)]B2(q)B2(0) (A.5)

Total of I & II : summing all non-vanishing, q dependent terms from both cases yields:

(2k(N − k) + [k(N − k)(N − k − 1) + k(k − 1)(N − k)])B2(q)
2

+ (4k(N − k) + 2 [k(N − k)(N − k − 1) + k(k − 1)(N − k)])B2(q)B2(0)

= Nk(N − k)
[
B2(q)

2 + 2B2(q)B2(0)
]
(A.6)

Casimir scaling remains at 2-loops in pure Yang-Mills.

There are two main factors above which lead to the Casimir-like scaling: Firstly, the

only non-trivial q-dependence arises from either one, or both of Ca and Cb being non-zero.

Secondly, and more importantly, the combined function B2(Ca)B2(Cb) is even. Thus for

the cases where the indices of f2, a, b and c are off-diagonal (as in both of the cases above)

the two contributions from l being in different sectors sum to give the scaling. Explicitly,

consider a general function of Ca and Cb, H(Ca, Cb), where all q-dependence vanishes only

for H(0, 0). Focusing on the analogous arguments to Case I:

f ij,ji,diagf ij,ji,diagH(Cij, Cji) = k(N − k) [H(q,−q) +H(−q, q)] (A.7)

The diagonal contribution produces the Casimir scaling. However, for the off-

diagonal contributions:

f il,lj,jif il,lj,jiH(Cil, Clj) = k(N − k) [(N − k − 1)H(q,−q) + (k − 1)H(−q, q)] (A.8)

If H(Ca, Cb) is not an even function, there is a departure from Casimir scaling. In partic-

ular, if H(q,−q) = H(−q, q), then the two loop result is proportional to k(N − k). The

result, eq.(A.6), is the pure Yang-Mills result, however there is a plausibility argument that

the Casimir scaling remains at 2-loops for N =4 SYM.

– 22 –



J
H
E
P
0
1
(
2
0
0
9
)
0
7
6

References

[1] L.G. Yaffe and B. Svetitsky, First order phase transition in the SU(3) gauge theory at finite

temperature, Phys. Rev. D 26 (1982) 963.

[2] B. Svetitsky and L.G. Yaffe, Critical behavior at finite temperature confinement transitions,

Nucl. Phys. B 210 (1982) 423.

[3] T. Bhattacharya, A. Gocksch, C. Korthals Altes and R.D. Pisarski, Interface tension in an

SU(N) gauge theory at high temperature, Phys. Rev. Lett. 66 (1991) 998.

[4] T. Bhattacharya, A. Gocksch, C. Korthals Altes and R.D. Pisarski, Z(N) interface tension

in a hot SU(N) gauge theory, Nucl. Phys. B 383 (1992) 497 [hep-ph/9205231].

[5] P. Giovannangeli and C.P. Korthals Altes, ’t Hooft and Wilson loop ratios in the QCD

plasma, Nucl. Phys. B 608 (2001) 203 [hep-ph/0102022].

[6] P. Giovannangeli and C.P. Korthals Altes, Spatial ’t Hooft loop to cubic order in hot QCD,

Nucl. Phys. B 721 (2005) 1 [hep-ph/0212298].

[7] P. de Forcrand, B. Lucini and M. Vettorazzo, Measuring interface tensions in 4D SU(N)

lattice gauge theories, Nucl. Phys. 140 (Proc. Suppl.) (2005) 647 [hep-lat/0409148].

[8] F. Bursa and M. Teper, Casimir scaling of domain wall tensions in the deconfined phase of

D = 3 + 1 SU(N) gauge theories, JHEP 08 (2005) 060 [hep-lat/0505025].

[9] P. de Forcrand, B. Lucini and D. Noth, ’t Hooft loops and perturbation theory,

PoS(LAT2005)323 [hep-lat/0510081].

[10] C. Korthals-Altes, A. Kovner and M.A. Stephanov, Spatial ’t Hooft loop, hot QCD and Z(N)

domain walls, Phys. Lett. B 469 (1999) 205 [hep-ph/9909516].

[11] A.V. Smilga, No Z(n) bubbles in hot Yang-Mills theory, hep-th/9409174; Are Z(n) bubbles

really there?, Ann. Phys. (NY) 234 (1994) 1.

[12] O. Aharony and E. Witten, Anti-de Sitter space and the center of the gauge group, JHEP 11

(1998) 018 [hep-th/9807205].

[13] A. Armoni, Anomalous dimensions from a spinning D5-brane, JHEP 11 (2006) 009

[hep-th/0608026].

[14] C.P. Korthals Altes, Constrained effective potential in hot QCD, Nucl. Phys. B 420 (1994)

637 [hep-th/9310195].

[15] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150].

[16] C. Korthals-Altes and A. Kovner, Magnetic Z(N) symmetry in hot QCD and the Spatial

Wilson loop, Phys. Rev. D 62 (2000) 096008 [hep-ph/0004052].

[17] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131].

[18] D.J. Gross and H. Ooguri, Aspects of large-N gauge theory dynamics as seen by string theory,

Phys. Rev. D 58 (1998) 106002 [hep-th/9805129].

[19] A. Brandhuber, N. Itzhaki, J. Sonnenschein and S. Yankielowicz, Wilson loops, confinement

and phase transitions in large-N gauge theories from supergravity, JHEP 06 (1998) 001

[hep-th/9803263].

– 23 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD26%2C963
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB210%2C423
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C66%2C998
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB383%2C497
http://arxiv.org/abs/hep-ph/9205231
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB608%2C203
http://arxiv.org/abs/hep-ph/0102022
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB721%2C1
http://arxiv.org/abs/hep-ph/0212298
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHZ%2C140%2C647
http://arxiv.org/abs/hep-lat/0409148
http://jhep.sissa.it/stdsearch?paper=08%282005%29060
http://arxiv.org/abs/hep-lat/0505025
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LAT2005)323
http://arxiv.org/abs/hep-lat/0510081
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB469%2C205
http://arxiv.org/abs/hep-ph/9909516
http://arxiv.org/abs/hep-th/9409174
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APNYA%2C234%2C1
http://jhep.sissa.it/stdsearch?paper=11%281998%29018
http://jhep.sissa.it/stdsearch?paper=11%281998%29018
http://arxiv.org/abs/hep-th/9807205
http://jhep.sissa.it/stdsearch?paper=11%282006%29009
http://arxiv.org/abs/hep-th/0608026
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB420%2C637
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB420%2C637
http://arxiv.org/abs/hep-th/9310195
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C253
http://arxiv.org/abs/hep-th/9802150
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C096008
http://arxiv.org/abs/hep-ph/0004052
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C2%2C505
http://arxiv.org/abs/hep-th/9803131
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD58%2C106002
http://arxiv.org/abs/hep-th/9805129
http://jhep.sissa.it/stdsearch?paper=06%281998%29001
http://arxiv.org/abs/hep-th/9803263


J
H
E
P
0
1
(
2
0
0
9
)
0
7
6

[20] R.C. Myers, Dielectric-branes, JHEP 12 (1999) 022 [hep-th/9910053].

[21] N. Drukker and B. Fiol, All-genus calculation of Wilson loops using D-branes, JHEP 02

(2005) 010 [hep-th/0501109].

[22] S.A. Hartnoll and S. Prem Kumar, Multiply wound Polyakov loops at strong coupling, Phys.

Rev. D 74 (2006) 026001 [hep-th/0603190].

[23] S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05

(2006) 037 [hep-th/0603208].

[24] S.A. Hartnoll and S.P. Kumar, Higher rank Wilson loops from a matrix model, JHEP 08

(2006) 026 [hep-th/0605027].

[25] J. Gomis and F. Passerini, Holographic Wilson loops, JHEP 08 (2006) 074 [hep-th/0604007].

[26] J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859

[hep-th/9803002].

[27] S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large-N gauge theory and

Anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001].

[28] E. Witten, Baryons and branes in Anti de Sitter space, JHEP 07 (1998) 006

[hep-th/9805112].

[29] C.G. Callan Jr., A. Guijosa and K.G. Savvidy, Baryons and string creation from the

fivebrane worldvolume action, Nucl. Phys. B 547 (1999) 127 [hep-th/9810092].

[30] C.G. Callan Jr., A. Guijosa, K.G. Savvidy and O. Tafjord, Baryons and flux tubes in

confining gauge theories from brane actions, Nucl. Phys. B 555 (1999) 183

[hep-th/9902197].

[31] E. Witten, Branes and the dynamics of QCD, Nucl. Phys. B 507 (1997) 658

[hep-th/9706109].

[32] B.S. Acharya and C. Vafa, On domain walls of N = 1 supersymmetric Yang-Mills in four

dimensions, hep-th/0103011.

– 24 –

http://jhep.sissa.it/stdsearch?paper=12%281999%29022
http://arxiv.org/abs/hep-th/9910053
http://jhep.sissa.it/stdsearch?paper=02%282005%29010
http://jhep.sissa.it/stdsearch?paper=02%282005%29010
http://arxiv.org/abs/hep-th/0501109
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C026001
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C026001
http://arxiv.org/abs/hep-th/0603190
http://jhep.sissa.it/stdsearch?paper=05%282006%29037
http://jhep.sissa.it/stdsearch?paper=05%282006%29037
http://arxiv.org/abs/hep-th/0603208
http://jhep.sissa.it/stdsearch?paper=08%282006%29026
http://jhep.sissa.it/stdsearch?paper=08%282006%29026
http://arxiv.org/abs/hep-th/0605027
http://jhep.sissa.it/stdsearch?paper=08%282006%29074
http://arxiv.org/abs/hep-th/0604007
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C80%2C4859
http://arxiv.org/abs/hep-th/9803002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=EPHJA%2CC22%2C379
http://arxiv.org/abs/hep-th/9803001
http://jhep.sissa.it/stdsearch?paper=07%281998%29006
http://arxiv.org/abs/hep-th/9805112
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB547%2C127
http://arxiv.org/abs/hep-th/9810092
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB555%2C183
http://arxiv.org/abs/hep-th/9902197
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB507%2C658
http://arxiv.org/abs/hep-th/9706109
http://arxiv.org/abs/hep-th/0103011

